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Abstract

In this work, we study the perception problem for garments using tools
from computational topology: the identification of their geometry and posi-
tion in space from point-cloud samples, as obtained e.g. with 3D scanners.
We present a reconstruction algorithm based on a direct topological study of
the sampled textile surface that allows us to obtain a cellular decomposition
of it via a Morse function. No intermediate triangulation or local implicit
equations are used, avoiding reconstruction-induced artifices. No a priori
knowledge of the surface topology, density or regularity of the point-sample
is required to run the algorithm. The results are a piecewise decomposition
of the surface as a union of Morse cells (i.e. topological disks), suitable for
tasks such as noise-filtering or mesh-independent reparametrization, and a
cell complex of small rank determining the surface topology. This algorithm
can be applied to smooth surfaces with or without boundary, embedded in
an ambient space of any dimension.

Keywords: computational topology; Morse functions; surface
reconstruction; point-clouds.

1. Introduction

Robotic manipulation of cloth in a domestic environment is an increas-
ingly relevant problem because of the ubiquitous presence of textiles in hu-
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man activities; with promising applications ranging from automated folding
to dressing disabled people [[8, 11]]. When an arbitrary and unknown gar-
ment is presented before the robot, a point-sample of it can be obtained
through the use of depth-cameras or 3D-scanners. Nevertheless, these points
will in general have no known structure. This is where reconstructing and rec-
ognizing the textile from the point-cloud (i.e. to parametrize and deduce its
topology) becomes of great importance if one wishes the robot to manipulate
the garment [[25]].

Arguably, the main challenge faced in the automated manipulation of
cloth is the high number of deformation states that textiles can present [[23]].
In contrast to rigid body manipulation, where the dynamics of the manipu-
lated object are very well understood [[24]], there is not one single physical
model that can be considered best in terms of describing the dynamics of real
textiles [[22]]. In any case, physical models of cloth behavior remain useful for
developing planning and control strategies [[18, 3]]; as well as for generating
the massive data required to train learning algorithms before their deploy-
ment and tuning in the real world [[17, 4]]. For all of these tasks it is crucial
to have an accurate and fast-to-compute reconstruction of the garment to be
controlled/simulated.

Naturally, because of the previous reasons, the reconstruction of a surface
in space from a sample of points on it is a question to which considerable
attention has been devoted in the areas of Computational Geometry and
Computer Graphics (see [[7]] for algorithms with mathematical guarantees
and [[16]] for a survey of state-of-the-art methods). Common algorithms
involve triangulating the cloud points, fitting local implicit functions or more
recently applying learning (i.e. Neural Networks) methods. Nevertheless, to
our knowledge almost all these algorithms disregard a direct topological study
of the point-cloud. Moreover, most of them focus on reconstructing watertight
surfaces (i.e. without boundary). Applying this kind of algorithms to point-
clouds coming from garments can lead to incorrect results since textiles can
be naturally realized as surfaces with boundary, which is coincidentally what
the majority of physical models assume in order to simulate them. One of
the reasons for this focus on reconstructing surfaces without boundary may
be the challenge associated in detecting boundaries of point-cloud surfaces
(see [[20]]): the problem is in general ill-posed since regions of the cloud with
low density could be mistaken for boundaries of the underlying surface (e.g.
think about removing small disks in a point-cloud coming from a sphere).
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In this work, we present a novel reconstruction algorithm that proceeds
directly from a point-cloud to obtain a cellular decomposition of the cloth
surface: a global piecewise decomposition of the surface is found, with a
small number of pieces which are parametrized disks. No intermediate trian-
gulation or local implicit equations are used, avoiding reconstruction-induced
artifices. The algorithm is robust: it always produces a surface, and it cap-
tures the topological features of the sampled surface with a size greater than
the average distance between sample points. From the cellular decomposi-
tion, the topology of the surface can be deduced immediately. To obtain this
decomposition, we present for the first time in literature (to our knowledge)
an algorithm to determine how (discrete) Morse cells attach to each order (see
Figure 1). Furthermore, for the case of surfaces with boundary, we develop
a novel graph-theoretical method to determine robustly boundary points of
the cloud.

Our decomposition algorithm was first sketched by the authors in two
proceedings papers [[1, 5]]. Here we expand on that work to give full expla-
nations on how to treat the case of surfaces with boundary, we explain for the
first time in detail the theory behind our method, we give a full algorithm on
how to compute the Morse cells and their attachment maps, we discuss and
present results on the problem of how to parameterize the cell decomposition
by flat patches and we reconstruct novel challenging point-clouds of surfaces
with boundary.

1.1. Organization

The remainder of this paper is organized as follows: in Section 2 we re-
view literature from computational and differential topology related to our
method; then in Section 3 we explain and develop the theoretical machinery
–coming from smooth Morse theory– needed to apply our algorithm success-
fully. In Section 4 we initiate the study of the point-cloud, giving it local
structure by finding neighbors for each point, their tangent planes and the
boundary curves. Section 5 deals with the computation of the Morse flow,
critical points, Morse cells and how they attach to each other, and it is one
of the main contributions of this work. Finally, in Section 6 we explain how
to parametrize the 2-cells by flat regions of the plane; and in Section 7 we
present the reconstruction of five challenging point-clouds (four with bound-
ary, one of them being a real 3D scan of a garment) using the presented
algorithm.
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2. Related work

Since its beginnings, Differential Topology has tackled the piecewise parametriza-
tion problem for manifolds through Morse functions. A smooth map f : M →
R defined on a compact manifold without boundary is Morse if it has only
finitely many critical points, and at all of these the HessianH(f) is nondegen-
erate. Classical Morse theory (see [[14]]) shows that a generic Morse function
f induces, through its gradient flow, two decompositions of the manifold M :

1. As a CW complex (see [[21]]): Each critical point of f , together with
its unstable manifold for the vector field −∇f , forms a cell which is
topologically a ball, whose boundary attaches to lower-dimensional cells
(see Figure 1). A global piecewise parametrization of M is achieved,
and a Morse-Smale complex, with the critical points of f as a basis,
giving the singular homology of M .

2. As level sets: M is foliated by the level sets f−1(c). For regular values
c these level sets are submanifolds of M with codimension 1, with a
diffeomorphism f−1(c1) ∼= f−1(c2) if no critical value of f lies between
c1 and c2. The transformation of the level set when c crosses a critical
value of f is a surgery (see [[14]] and Section 3).

Figure 1: Critical points of the Morse-Smale function f(x, y, z) = z on an example surface.
The cellular decomposition is obtained by gluing two 2-cells each containing d and c (the
maxima) along the curve through b (the saddle point) and a (the minimum).

The success of Morse theory comes from the fact that Morse functions,
and the Morse-Smale transversality conditions required for the above anal-
ysis, are generic among C2 maps from M to R. For instance, the height
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function in a random direction in RN has probability 1 of being a Morse-
Smale function, i.e. the measure of the set where the height function is not
Morse-Smale is zero. Morse theory also extends to manifolds with boundary
via stratified spaces [[13]] as we explain in detail in this work.

Applying Morse theoretical ideas directly to the sample point-cloud of
a surface S was first suggested by [[10, 26]], who propose an algorithm for
point-clouds with a known, homogeneous density of sampling. Later, in [[2]] a
Morse decomposition scheme from point-clouds sampling manifolds without
boundary of any dimension is proposed. All these works, however, stop
short of questions such as cell parametrization or attachment maps, which
are relevant to robotic applications where point-clouds of textiles may need
to be filtered and down-sampled in order to be simulated or controlled as
explained in the introduction. We use the gradient flows of [[10, 26]] as the
starting point, but then detect critical points and their Morse cells differently,
proposing a new procedure based on studying the level sections of these flows.

3. Preliminaries: smooth Morse theory

In this section we present a summary of smooth Morse theory for sur-
faces with and without boundary. We first explain briefly the case without
boundary, which encapsulates the main ideas of the field. For a summary of
this part, including what is needed to run our algorithm see Section 3.3.

3.1. Morse theory for surfaces without boundary

Let S ⊂ RN be a smooth compact surface without boundary. The goal is
to decompose any given S as in Figure 1. In order to do that, we will compute
its Morse-Smale complex, which in the case of a surface only consists of 0-cells
(points), 1-cells (curves) and 2-cells (topological disks).

As explained before, a map f : S → R is Morse if it is C2, has only finitely
many critical points (i.e. points p where dpf = ∇f(p) = 0), and at all of
these its Hessian has rank 2.

Definition 1 (Morse data). For each critical point p ∈ S, the Morse data
are the pair of sets (A(p), B(p)) where

A(p) := B(p) ∩ f−1 ([f(p)− ϵ, f(p) + ϵ]) ,

with B(p) ⊂ RN a closed ball around p of sufficiently small radius, the value of
ϵ > 0 is such that there are not more critical points of f in f−1 ([f(p)− ϵ, f(p) + ϵ])

5



and B(p) := B(p) ∩ f−1 (f(p)− ϵ). Notice that B(p) ⊆ ∂A(p). See Figure 2
for examples of the sets A,B.

Theorem 1 (Main theorem of Morse theory). Let us now denote f≤c =
f−1 ((−∞, c]) , fc = f−1(c). Then (see [[14]]) as c ∈ R increases only two
things can happen:

A If c1 < c2 and there are no critical values of f between them, then f≤c1

and f≤c2 have the same topology (they are actually diffeomorphic).

B If there is a single critical point p ∈ S such that c1 < f(p) < c2 then f≤c2

is obtained, up to diffeomorphism, from f≤c1 by attaching the cell A(p)
along B(p), i.e. f≤c2 ≃ (f≤c1 ∪ A(p)) / ∼ where the equivalence relation
is given by identifying B(p) ⊆ f≤c1 with points of ∂A(p) ⊇ B(p).

Figure 2: Three types of critical points p (from top to bottom: minima, saddles and
maxima) and their Morse data (A(p), B(p)) for surfaces without boundary.
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The previous theorem is useful because it allows us to deduce how to
couple each type of critical point with the Morse cells that will give us the
sought decomposition of the surface under study (e.g. Figure 1). Since H(f)
has rank 2 at p, we can only have three types of critical points (see Figure
2) according to their index (number of negative eigenvalues of H(f)):

1. Minima: A(p) is homeomorphic to a disk and B(p) = ∅. In this case
there is no surgery, the cell A(p) just appears. This cell retracts to a
point, the local minimum, which will be a 0-cell in the Morse-Smale
complex.

2. Saddles: A(p) is a quadrilateral (homeomorphic to a disk) and B(p)
consists of two segments. Two opposite sides of ∂A(p) are identified
with B(p) (see Figure 2). The attachment of the cell A(p) along B(p) is
homotopy-equivalent to the attachment of a 1-cell, namely the medial
axis of A(p) to the middle points of B(p).

3. Maxima: A(p) = D is homeomorhic to a disk and B(p) = ∂D is
its boundary. The attachment map identifies ∂A(p) with B(p). This
surgery adds a 2-cell to the complex.

In summary, minima generate 0-cells of the complex, saddle points 1-cells
and maxima 2-cells. For instance, in Figure 1 there is one 0-cell (point a),
one 1-cell (the closed curve passing trough a and b) and two 2-cells (one
containing d and the other c).

3.2. Morse theory for surfaces with boundary

Morse theory also extends to manifolds with boundary via stratified
spaces [[13]]. Since stratified Morse theory is less well known and in [[13]]
no explicit construction is given for manifolds with boundary, in this section
we give more details on how the boundaries affect the cellular decomposition
and the transition between level sets using the terminology presented in the
previous section for the case without boundary.

Definition 2 (Morse function). We say that a C2 map f : M → R defined
in a manifold M with boundary ∂M is Morse if

1. it is Morse in the interior of M ,

2. its restriction to ∂M , g := f|∂M is also a Morse function,
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Figure 3: Critical points of the Morse-Smale function f(x, y, z) = z on an example sur-
face with boundary. Notice that now we have a boundary maximum b′ and a boundary
minimum a′ since we have removed a disk.

3. if p ∈ ∂M is a critical point of g then ker(dpf) = {0}.

As in the previous section we will focus in the case M = S is a surface.
Notice that now we can have critical points of f|∂S in the boundary curves
∂S that are not critical points of f in the whole of S. Those are only 2 new
cases which we call boundary minima and maxima (since ∂S is a curve, there
can not be saddle points of g, see Figure 3). These critical points will be
responsible for generating new Morse cells depending on whether they are
also local maxima or minima of the full surface or not (see Section 3.3). On
a technical side, the third condition of the previous definition rules out the
possibility that critical points located at ∂S are saddle points of f in S.

Now we give more details on how Morse theory is applied to surfaces
with boundary following the notions introduced in Section 3.2 and the tools
developed in [[13]]. Since the boundary of a surface with boundary is itself a
manifold, we will adopt a Whitney stratification dividing the surface into two
strata: the first E1 = ∂S being the boundary and the second E2 = int(S)
the interior. Each stratum will have as before Morse data, but this time
apart from the sets (A(p), B(p)) defined as in Definition 1, which we will call
tangential data, we will have also normal data.

Definition 3 (Tangential and normal data). Let p ∈ S be a critical point
for some stratum Ei of the Morse function f |Ei

. Then
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1. The tangential Morse data are the pair of sets (AT , BT ) defined as in
Definition 1 for f |Ei

.

2. The normal Morse data are the sets (AN , BN) given by

AN(p) := N (p) ∩ f−1 ([f(p)− ϵ, f(p) + ϵ]) ,

BN(p) := N (p) ∩ f−1 (f(p)− ϵ) .

where N (p) = S ∩D(p) is called the normal slice at p and D(p) ⊂ RN

is a sufficiently small closed disk around p of dimension N − dim(Ei)
transversal to Ei at p and the value of ϵ > 0 is such that there are no
more critical points in f−1[f(p)− ϵ, f(p) + ϵ].

Notice that by construction Ei ∩D(p) = {p}, and as before BN,T ⊆ ∂AN,T .

Remark 3.1. When p ∈ int(S) and N = 3 then D(p) is homeomorphic
to a piece of curve normal to S at p and hence N (p) = {p}. Therefore
(AN , BN) = (p, ∅). It is not hard to see that this is also the case when
N > 3.

We are now ready to state the main theorem of stratified Morse theory
[[13]] (SMT theorem, pages 6-8).

Theorem 2 (Goresky-MacPherson). As c ∈ R increases two things can
happen:

A If between c1 < c2 there are no critical points of f , then f≤c1 and f≤c2 are
diffeomorphic.

B If there is a critical point p ∈ S such that c1 < f(p) < c2, then f≤c2 is
obtained from f≤c1 by performing a surgery around p with Morse data
(A,B) diffeomorphic to the topological product

(AN , BN)× (AT , BT ) = (AN × AT , AN ×BT ∪BN × AT ),

i.e. f≤c2 ≃ (f≤c1 ∪ A) / ∼ where the equivalence relation is given by
identifying B ⊆ f≤c1 with points of ∂A ⊇ B.

Remark 3.2. We already established that at interior critical points of S, we
have (AN , BN) = (p, ∅). Therefore in that case the above product is trivial
and the attachment maps are the same ones described earlier.
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The new cases occur when p is a critical point of f |∂S lying on ∂S. Since
∂S is a one-dimensional curve, p ∈ ∂S can only be a maximum or a minimum.
Nevertheless, depending on whether p is also a local minima (resp. maxima)
of f or just of g = f |∂S, we will have four different cases (see Figure 4).
Recall that for minima (and maxima) points p of f located at ∂S we have that
dpf ̸= 0. Nevertheless, in order not to complicate the discussion semantically
we will still call them critical points since they satisfy dpg = 0.

Remark 3.3. We will denote by (■,⊔, | |, ) a quadrangular 2-cell, all its
sides minus the top one, two lateral sides and the bottom side, respectively.

Figure 4: Four types of critical points located at the boundary and their tangential and
normal Morse data.

The four new types of critical points that we can have are:

Maxima of f |∂S: In this case AT is a closed concave piece of curve (which
we denote by ∩) and BT two points, i.e. (AT , BT ) = (∩, . .). We now
have two sub-cases:

1. p is also a local maximum of f . Then AN is a closed interval and
BT one point, i.e. (AN , BN) = ( | , . ). Therefore the topological
product is

(A,B) = (∩, . .)× ( | , . ) = (■,⊔) ,
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and the three of the sides of ∂A where p is not present are attached
to B. During this surgery a 1-cell (containing p) is attached to
the boundary and a 2-cell to the interior (closing a void in the
process).

2. p is not a local maximum of f (only of f |∂S). Then AN is again
a closed interval but BT is empty, i.e. (AN , BN) = ( | , ∅). Then
the Morse data is

(A,B) = (∩, . .)× ( | , ∅) = (■, | | ) ,

and the two opposite sides of ∂A where p is not present, attach to
B. This surgery is equivalent to attaching a 1-cell to the boundary
(but no 2-cell is attached to the interior).

Minima of f |∂S: In this case AT is a closed convex piece of curve (which we
denote by ∪) and BT is empty, i.e. (AT , BT ) = (∪, ∅). We again have
two sub-cases:

1. p is also a local minimum of f . Then AN is a closed interval and
BT is empty, i.e. (AN , BN) = ( | , ∅). Therefore the topological
product is

(A,B) = (∪, ∅)× ( | , ∅) = (■, ∅) .

In this case there is no surgery, the cell A just appears. This cell
retracts to a point, which will be a 0-cell in the cell complex.

2. p is not a local minimum of f (only of f |∂S). Then AN is a closed
interval and BT is a point, i.e. (AN , BN) = ( | , . ). The Morse
data is

(A,B) = (∪, ∅)× ( | , . ) = (■, ) .

and the opposite side of ∂A where p is, attaches to B. This surgery
is equivalent to attaching a 0-cell to the boundary and a 1-cell to
the interior.

3.3. Construction of the Morse-Smale complex

We now make a summary of the effect of each critical point on the cell
complex once we have made the appropriate deformation retracts. Recall
that 0-cells are points, 1-cells are curves and 2-cells are topological disks.
Boundary curves of ∂S will be part of the complex as 1-cells.
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1. Interior maximum: attach a 2-cell to the 1-cells as before.

2. Interior saddle: attach a 1-cell to the 0-cells as before or to a point of
the boundary (this point becomes a new 0-cell).

3. Interior minimum: add a 0-cell to the skeleton as before.

4. Local maximum of S located in ∂S: attach a 1-cell to a 0-cell (on the
boundary) and attach a 2-cell to the 1-cells.

5. Boundary maximum (not of S): attach a 1-cell to a 0-cell (on the
boundary).

6. Local minimum of S located in ∂S: add a 0-cell to the skeleton (this
point will be on the boundary).

7. Boundary minimum (not of S): add a 0-cell (boundary point) to the
skeleton and attach a 1-cell to a 0-cell or to a point of the boundary
(this point becomes a new 0-cell).

In order to construct the complex, we first add all the 0-cells (all interior,
boundary minima and possibly some points of the boundary), then the 1-cells
(the boundary curves, the 1-cells corresponding to each saddle point and the
1-cells joining boundary minima to local minima or boundary points) and
finally add the 2-cells corresponding to each local maximum.

Remark 3.4. A delicate point that we have not discussed yet, but will be
crucial for our algorithm, is how to compute which cells attach to which cells
(these are called the attachment maps). This problem will be addressed in
detail for point-clouds in Section 5.

4. Structure of the point-cloud

Before we can define the flow of a Morse function on a given point-cloud
X, we will need to give it a local structure. This is done by finding local
neighbors to each point, which allows us to estimate tangent planes to X
and will be very important later to recognize boundary points.
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4.1. Neighbors identification

The first step is the identification of a set of neighbors of each point v in
the cloud X ⊂ RN . There are two classical approaches:

1. k -nearest neighbors (KNN): given a value for k and a point v, the k
nearest points {v1, . . . vk} with respect to the Euclidean distance are
declared as its neighbors. This is quite efficient to compute but runs
into problems when the point-cloud has irregular densities and k is not
big enough, e.g. when all the closest points to v are clustered at one
side of it and do not enclose the vertex (see Figure 5, left).

2. Voronoi-Delaunay neighbors: we perform Voronoi’s cellular decomposi-
tion of the point-cloud and then declare as neighbors of v the points vi
belonging to neighboring cells (i.e. those connected to v by an edge in
the Delaunay triangulation of the cloud). This has the virtue of enclos-
ing the vertex v even with irregular densities, but it can be expensive
to compute and may produce neighbors too apart from each other (see
Figure 5, right).

Figure 5: Typical problems associated to k -nearest neighbors (left) and Voronoi neighbors
(right). On the left, most closest points to v (in bold) are clustered at one side of it. On
the right, vertices that are too far apart from each other belong to neighboring cells.

Therefore we merge these two criteria, and declare two points as neighbors
when (i) each point is among the k-nearest neighbors of the other and (ii)
their Voronoi cells in the decomposition of the ambient space RN induced by
X are adjoining. In order to be efficient, inspired by sphere packing theory
[[12]], we first choose a k = 12 to compute the k-nearest points and then
only keep as neighbors the vertices that are connected to v in the Delaunay
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triangulation of these few points. Finally the relationship of neighborhood
is made symmetric by reciprocating neighboring relationships where needed.
The neighbors of v will be denoted by Neigh(v). This produces a (locally
non-planar) graph, which gives an idea of the local structure of X, but which
will be in general very complicated.

4.2. Discrete curvature filter

In order to avoid the proliferation of critical points of the Morse-Smale
function that in turn would generate a very high number of Morse cells, once
we have identified neighbors of each point, we apply a discrete-curvature filter
to the point-cloud. This means that we substitute each point v for a weighted
average of its position and the location of its neighbors:

h(v) = αv + (1− α)
1

|Neigh(v)|
∑

vi∈Neigh(v)

vi.

When applied a small number of times this filter defines a bijection between
the original cloud and the filtered one, which preserves the topology of the
underlying surface (see [[6]] for a thorough discussion of topology preserving
curvature flows applied to triangle meshes). Hence, the decomposition we
find for the filtered case will still be valid and topologically accurate for the
original cloud. The application of this filter is not always needed, being most
relevant when the point-clouds present a lot of noise or a high level of local
variability.

4.3. Tangent space estimation

This task is performed through Principal Component Analysis [[15]]: if
the point v and all its neighbors Neigh(v) = {v1, . . . vk} were co-planar we
would have that for every i: ⟨v⃗vi, nj⟩ = 0, where nj are all the normal
vectors to the surface at v (recall that in general we are in RN). Since in
general this will not be the case, we find the nj’s by minimizing the function∑

j

∑k
i=1⟨v⃗vi, nj⟩2. This is equivalent to finding the regression plane through

v in the least squares sense, and it can be done efficiently by means of a
singular value decomposition of the matrix with vectors v⃗vi as rows: the
right singular vectors corresponding to the 2 largest singular values define
the tangent plane, whereas the rest give us the normal directions.
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4.4. Boundary recognition

Once we have an estimation of the tangent spaces, in principle a bound-
ary point of the surface can be easily identified because after orthogonally
projecting it and its neighbors on its tangent plane, they cluster in a semi-
space (see the first panel of Figure 6). Nevertheless this method is difficult
to implement robustly (see the second panel of Figure 6).

Figure 6: In principle, a boundary point can be identified easily because after projecting
it and its neighbors on the tangent plane, they cluster in a semi-space of R2 (left panel).
Nevertheless, this is not always the case for every boundary point (middle panel). To
overcome this, we declare a point as being on the boundary when none of the plane
projections of it and its neighbors in all their respective tangent planes enclose the point
(right panel).

In order to obtain a robust detection, the idea will be to declare points
as lying on the boundary only when the projections do not enclose the point.
In points with high curvature where the tangent plane may not be perfectly
estimated the previous method can give false positives (see Figure 7 lower
panel, left). In order to overcome this difficulty, we will also project the point
and all its neighbors in the tangent planes estimated for the neighbors. We
will build a graph for every projection and only declare v as boundary point
when none of the graphs enclose v (see Figure 7 lower panel, right).

Now we proceed to describe our method in detail: let v ∈ X, and TvS be
the estimated tangent plane at v. We follow the following steps:

1. Given {v1, . . . vk} the neighbors of v0 := v we project the k + 1 points
on the planes TvjS for j = 0, . . . k. These projections will be denoted
by πj(vi).
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Figure 7: In interior points with high curvature the projections of the neighbors (red) of a
point (black) into the tangent plane of the point may not enclose said point (lower panel,
left). In order to avoid false positives we also project the point and its neighbors into the
tangent planes estimated for the neighboring points (lower panel right).

2. We create a plane graph Gj with the projected points for every j =
0, . . . k, where we add an edge between πj(vi) and πj(vl) only when vi, vl
are themselves neighbors in the cloud and i, l ̸= 0.

3. We declare the vertex v0 as a boundary point only when none of the
plane graphs Gj enclose πj(v0) for every projection to TvjS.

Remark 4.1. In point-clouds with irregular densities the previous algorithm
can still give false positives because of small boundary holes. In that case
clusters of boundary points with small diameter (i.e. clusters contained in
small balls) can be discarded.

4.5. Reconstruction of curves

Curve reconstruction from a point-cloud sample is used for boundary
parametrization, and later for level set reconstruction when we intersect the
gradient flow graph with level hyperplanes. We employ a variant of the
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NN-Crust algorithm described in [[7]], which can be called KNN-Crust: we
limit the search of edges to the k-nearest neighbors on the curve, usually
with k = 5. The rest of the reconstruction follows as in [[7]]. Thus, from
now on, we assume that boundary curves of the cloud (if present) have been
reconstructed and parametrized.

5. Morse function and Morse cells

Once we have a notion of neighborhoods in the cloud, we are able to define
Morse functions, and more importantly their flows. This in turn allows us to
compute critical points and from them the Morse cells that form the skeleton
of the topological decomposition of the point-cloud. The final step will be
to study how these cells attach to each order, in order to recover the full
topology of the underlying surface.

5.1. Morse function and its flows

We define f : X → R as the height function f(v) = ⟨v, ν⟩ where ν is a
fixed unitary direction. We try several ν randomly until all the {f(v)}v∈X
are different and the number of local maxima of f (the future number of
2-cells) is small. In the presence of boundaries we also choose the direction
ν that minimizes the number of critical points at the boundaries. This keeps
the quantity of boundary 1-cells small.

Then, following [[10, 26]] we define the upward flow of f as the function
Up : X → X such that

Up(v) = argmaxvk∈Neigh(v), f(vk)>f(v)

f(vk)− f(v)

||vk − v||
. (1)

Analogously, the downward flow is the function Down : X → X defined
by

Down(v) = argminvk∈Neigh(v), f(vk)<f(v)

f(vk)− f(v)

||vk − v||
. (2)

When f(v) > f(vk) for every k ∈ Neigh(v), we have a local maximum
and write Up(v) = v. Likewise, when f(v) < f(vk) for every k ∈ Neigh(v),
we have a local minimum and Down(v) = v.

Since we have identified and parametrized the boundary curves of X, we
can define the two flows ∂Down(·) and ∂Up(·) analogously (considering that
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each boundary point has two natural neighbors in ∂X) so that they send
boundary points to boundary points. Then we can easily compute boundary
maxima (resp. minima). Notice that in general these points do not need to
be local maxima (resp. minima) of the full cloud X.

5.2. Hyperplane sections and computation of critical values

Next, we perform n level set intersections at equispaced levels ci = c0+i·h
ranging from cn = max f(X) to c0 = min f(X) (in the case of surfaces
with boundary it will be better to select levels not necessarily equispaced
as explained in Remark 5.1). This means that the we intersect the oriented
graph Gdown, with vertices X and edges given by Down(·) (i.e. two vertices
v, w ∈ X share an edge if w = Down(v)) and the boundary curves, with
the hyperplanes Hc = {p ∈ RN : p · ν − c = 0} (see Figure 8). These
intersections Γ (c) = Gdown ∩Hc are plane point-samples of one-dimensional
curves (possibly with boundary, i.e. intervals whose endpoints are precisely
boundary points of X that we have detected in Section 4.4) that we can
reconstruct and parametrize. Notice that by construction we can track the
correspondence of points between different levels Γ (ci+1) and Γ (ci) using
the flow Down(·). Changes in the number or topological type of connected
components of these level sets tell us that we have crossed critical points of
f . We will study each possible case separately.

In order to get the correspondence of points between the levels Γ (ci+1)
and Γ (ci) using Down(·), we may need to apply the flow more than once
depending on the size h of the jump between level sets that we have defined.
The explicit correspondence is obtained as follows: for each node v, we con-
sider the trajectory given by the sequence vn = Down(vn−1) where v0 = v
and then we intersect this polygonal curve with the planes Hci+1

and Hci

respectively.

Remark 5.1. When the surface has non-empty boundary we select level
sections that are not necessarily equispaced, so that between two consecutive
critical points of f there is always a regular level set (without any critical
value) in between.

Case without boundary

When the underlying surface S of the point-cloud X has no boundary,
the reconstructed curves Γ (c) are all homeomorphic to the disjoint union of
S1 and hence only 3 changes may happen:
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1. Passing a maximum: when going down from Γ (ci+1) to Γ (ci) a new
connected component appears (see Figure 8, left). These new points
can not be reached from points of Γ (ci+1) using the flow Down(·).

2. Passing a minimum: when going down from Γ (ci+1) to Γ (ci) an ex-
isting connected component disappears (see Figure 8, right). These
points do not go to points of Γ (ci) using the flow Down(·).

Figure 8: Left : Passing a maximum point when following the downwards flow: a connected
component appears. Right : Passing a minimum when following the downwards flow: an
existing connected component disappears.

3. Passing a saddle: when going down from Γ (ci+1) to Γ (ci) a connected
component appears or disappears (see Figure 9). Points on any com-
ponent of Γ (ci+1) have images in every component of Γ (ci) using the
flow Down(·).

Figure 9: Passing a saddle point when following the downwards flow: a connected compo-
nent appears or disappears.

Case with boundary

When the underlying surface S of the point-cloud X has a boundary ∂S,
the reconstructed curves Γ (c) are homeomorphic to a union of S1 and closed
intervals [0, 1]. These intervals always join two points of ∂S, introducing
a bordism equivalence relation in ∂S ∩ Hc. Therefore, we have the three
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previous cases, plus two new ones, since now we can have minima and maxima
at the boundaries. Saddle points can not be located at the boundaries since
that would violate the third condition of Definition 2 as already explained.
We will make a distinction between (local) minima (resp. maxima) of the
whole point-cloud, and boundary minima (resp. maxima) which are points
that are critical when we restrict f to the boundary curves, but not in the
whole surface.

We can have the following 5 cases:

1. Passing a local maximum: this is similar as before, when going down
from Γ (ci+1) to Γ (ci) a new connected component S1 or [0, 1] whose
points can not be reached from Γ (ci+1) using Down(·) appears.

2. Passing a local minimum: similarly as before, when going down from
Γ (ci+1) to Γ (ci) an existing connected component S1 or [0, 1] whose
points do not go to Γ (ci) using Down(·) disappears.

3. Passing a boundary maximum: when going down from Γ (ci+1) to Γ (ci)
either a [0, 1] opens in two intervals or a S1 splits into a [0, 1].

4. Passing a boundary minimum: when going down from Γ (ci+1) to Γ (ci)
either a [0, 1] closes to be a S1 or two [0, 1] merge into one interval.

5. Passing a saddle: this is the most complex case, when going down
from Γ (ci+1) to Γ (ci) a connected component S1 or [0, 1] appears or
disappears. We can also have a case where the number of connected
components stays the same but in passing from Γ (ci+1) to Γ (ci) the
bordism pairing of boundary points of ∂S given by the [0, 1] component
changes. Points on any component of Γ (ci+1) have images in every
component of Γ (ci) using the flow Down(·).

In Figure 10 we can see a summary of the generic (i.e. non-degenerate)
level set transformations when the level crosses that of a particular type of
critical point.
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Figure 10: Different local level set transformations: the reconstructed curves Γ (c)
are homeomorphic to a union of S1 and closed intervals [0, 1].

5.3. Identification of Morse cells

In this section we explain how to identify all the discrete Morse cells of
the complex that give us a cellular decomposition of the point-cloud.

0-cells

They correspond to local minima or to boundary minima of f , we already
found them; they are the fixed points of Down(·) and ∂Down(·) respectively.

1-cells

There are three cases that generate the 1-cells of the skeleton:

1. Boundaries: when S has non-empty boundary, the boundary curves
are also part of the 1-skeleton. We already parametrized those. Each
boundary maximum gives rise to a 1-cell that attaches to a 0-cell (point)
located at the boundaries.

2. Saddle points: there are one-dimensional curves that go from one local
minimum m1 or boundary point to another (not necessarily distinct)
local minimum m2 or boundary point passing through the saddle point.

21



3. Boundary minima: there are 1-cells in the complex not associated to
a saddle point or to boundary curves. In this last case they always
connect a boundary minimum to a local minimum or boundary point
of the cloud. In order to compute this 1-cell we simply flow down every
boundary minimum using Down(·).

Remark 5.2. When 1-cells introduced by saddle points or boundary minima
end at points of the boundary ∂S not previosly labeled as 0-cells, we introduce
the point where they meet to the 0-skeleton and divide the 1-cell into two.

Computation of saddles and their 1-cells

We now explain how to compute saddle points and afterwards their as-
sociated 1-cells. Recall that we know when we are in the presence of a
saddle: when going from Γ (ci+1) to Γ (ci) a connected component appears,
disappears or there is a change of bordism pairing of boundary points. In
any case, all points of Γ (ci+1) have images in Γ (ci) using the flow Down(·).
Therefore, there exist four points A,B,C,D in Γ (ci+1) that can be paired by
proximity (i.e. are neighbors in the level set curves) as {A,B} and {C,D}
whose images by Down(·) are now paired differently as {A′, C ′} and {B′, D′}
(see Figure 11). The saddle point is approximated by the average of the 8
involved points.

Figure 11: Change in level set topology when crossing a saddle point in a surface (left)
and point-cloud (right): note the change in neighbors among the 4 marked points after
applying the flow Down(·).

One branch of the 1-cell is obtained by taking the average of the two
orbits generated by Down(·) starting from {A′, C ′}. The other branch is
approximated in the same manner but starting from {B′, D′}. This averaging
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operation generates new points not previously in the cloud. All these new
points are added to the cloud, declaring as neighbors of s the 8 points used
for its computation, and for each new point of the branches its two neighbors
in the 1-cell plus the two points that were used for its computation. The
flows Down(·) and Up(·) are simply defined at those points by following the
newly created trajectories down or up (except the saddle points which are
fixed points of both flows). This ensures that this newly defined curve (the
1-cell) is invariant by both flows.

2-cells

There is one 2-cell for each local maximum of f (recall that boundary
maxima only generate 1-cells, i.e. the boundary curves), we already found
them (they are the fixed points of Up(·)), but we will now explain how to de-
duce which points of the cloud correspond to each 2-cell (or each maximum).
The idea is simply to flow up every point v ∈ X by Up(·) and see at which
maximum it ends up. In symbols this means that we consider the limit of
the sequence vn = Up(vn−1) where v0 = v when n → +∞ (this limit exists
because we have a finite number of points and maxima are fixed by Up(·)).
It can happen that the sequence {vn}+∞

n=1 converges to a saddle s. This can
only be allowed for points of the 1-cells, but must be corrected for the rest:
when a point v ends at a saddle s but it is not part of the 1-cell, we look at
the neighbors Neigh(v) and see in which maximum they finished. The most
common maximum among the neighbors is selected as the corrected desti-
nation of v. It may be necessary to iterate this procedure a finite number of
times.

5.4. Attachment maps of the Morse cells
Now that we have the skeleton of S, i.e. the 0, 1, 2-cells, we encounter a

delicate problem: figuring out the attachment maps between the cells. We
already know how the 1-cells attach to the 0-cells. We now discuss how 2-cells
attach to 1-cells. We must figure out which 1-cells are the boundary of the
2-cells, in which order, orientation and how many times they appear: once
(when they are part of the boundary of S or when they attach to a different
2-cell) or twice (when they will be, formally, two different sides of the 2-cell
that are identified).

Smooth case
We first describe the process for the smooth case (without boundary)

and then explain how to adapt it to point-clouds. Notice that the 2-cell
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corresponding to each maximum m̂, let us call it Dm̂, is the set of points that
converge to m̂ under the flow +∇f (in Dynamical System terminology, its
stable manifold). The main idea to deduce how the boundary of Dm̂ attaches
to the 1-cells is to choose a simple closed curve around each maximum and
flow it down by −∇f until it reaches the 1-cells. To achieve this properly,
we must perturb −∇f so that in a neighborhood of the 1-cells the gradient
flow is transversal (i.e. not parallel) to the 1-cells. This is needed since
otherwise the points of Dm̂ would converge to minima under the downwards
flow −∇f . In order to obtain this perturbed −∇f̃ we consider an arbitrary
small tubular neighborhood around the 1-cells and a normal vector field to
the 1-cells. These two flows are joined smoothly in the tubular neighborhood
with the aid of a partition of unity (i.e. bump functions, see [[14]]).

Discrete case

In the discrete case we choose a simple (i.e. without self-intersections)
closed curve of neighbors around each maximum (a crown) and flow it by
Down(·) until it reaches the 1-cells. We do this in a way such that when
a point of the curve has neighbors that are in the 1-cell, we stop following
the flow Down(·) and match the point in question to the point in the 1-cell
which results in the most negative downwards slope. This method would
work perfectly if simple closed curves were preserved by Down(·); since this
is not the case, we must repair the curve every time we flow it down. There
are three main situations:

1. Splitting of points : it may happen that two points w1 and w2 were
neighbors but Down(w1) and Down(w2) are not. In that case we define
the sub-graph of neighbors given by points

{v ∈ X : f(v) ≤ max [f(Down(w1)), f(Down(w2))]},

and compute the shortest path joining Down(w1) to Down(w2) (taking
as distance of a path that given by the edges of the graph).

2. Collapse of points : it may happen that two points w1 and w2 have the
same image Down(w1) = Down(w2). In that case we simply delete one
of the repeated points from the curve.

3. Creation of spikes : it may happen that one of two neighboring points
w1 and w2 has image Down(w2) = w1. This could happen with more

24



than one point at the time. In that case we simply delete the spiky
points (i.e. Down(w2) = w1) in the new curve.

The final problem we face is that the flowing crown may arrive at a stage
where it is stationary by the downward flow but some points of it have not
reached the 1-cells. In that case we pair each unmatched point of the crown
with the closest (as measured by the edges of the neighboring relationship of
the cloud) point of the 1-cells.

We now have a matching between the initial crown and the 1-cells (al-
though not a bijection). But this is enough to deduce which 1-cells are the
boundary of Dm̂ (only the 1-cells that are reached), in which order (this can
be deduced since the crown is parametrized), the orientation (again thanks
to the parametrization) and how many times they appear (once or twice,
depending on the matching). This information completely determines the
boundary operator of the Morse-Smale complex and hence the homology of
the surface (see [[14]]).

Attachment maps for surfaces with boundaries

When the surface S has a boundary ∂S, the boundaries of the 2-cells are
no longer only the 1-cells derived from the saddle points, but also possibly
curves of ∂S. We distinguish several cases depending on the type of maximum
we have:

1. Interior maxima (not belonging to ∂S): as before we flow down a crown
around the maximum until it reaches a point that is either a neighbor
of a boundary point or of a 1-cell. In this way we obtain a matching
between the boundary of the 2-cell and the 1-cells and boundary curves
of S.

2. Boundary maxima (but not a local maximum of S): they do not inter-
vene in the attachment maps of 2-cells to 1-cells (although they give
rise to a 1-cell in the boundary).

3. Local maxima (located at ∂S): we consider a semi-crown around the
maximum m̂, meaning that we take an arc of the boundary centered at
m̂ and complete it with neighboring interior nodes so that we obtain
a closed simple curve. Then we flow down this semi-crown in such a
way that the arcs of the boundary stay in the boundary (we use the
restricted flow ∂Down(·)) and the interior nodes of the curve flow down

25



normally by Down(·). As before we flow down the semi-crown until each
point of it reaches a node that is either a neighbor of a boundary point
or of a 1-cell.

For an example of this process in action, see the Supplementary Video 1.

5.5. Algorithm for the topological decomposition of point-clouds

To finish this section, we describe our full algorithm in pseudo-code (see
Algorithm 1), referencing the relevant sections needed to carry out the nec-
essary calculations. The only inputs we need are: the point-cloud X, the
number of neighbors k to consider and a unitary direction ν. As the fi-
nal result we get a decomposition consisting of 0-cells C0 (points), 1-cells C1
(polygonal curves) and 2-cells C2 (collection of points); together with their
attachment maps g1 : C1 → C0, g2 : C2 → C1 telling us which cells are the
boundary of other cells.

Algorithm 1 Reconstruction of point-cloud surfaces

Require: X, k, ν
1: Neigh← neighbors(X, k) ▷ (Section 4.1)
2: X ← curvatureFilter(X) ▷ (Section 4.2)
3: Normals← tangentPlanes(X,Neigh) ▷ (Section 4.3)
4: ∂X ← boundaryPoints(X,Neigh,Normals) ▷ (Section 4.4)
5: ∂S ← parametrizeCurves(∂X) ▷ (Section 4.5)
6: Up,Down← MorseFlows(X,Neigh, ν) ▷ (Section 5.1)
7: P ← criticalPoints(X, ∂S,Down, ν) ▷ (Section 5.2)
8: C0, C1, C2 ← MorseCells(X,P ,Down,Up) ▷ (Section 5.3)
9: g1, g2 ← attachmentMaps(X, C0, C1, C2,Down) ▷ (Section 5.4)
10: return C0, C1, C2, g1, g2

6. Parametrization of the 2-cells

Once we have each Morse cell and their attachment maps identified, the
last problem we face is how to parametrize the 2-cells, i.e. finding a flat do-
main D ⊂ R2 and a map ϕ : D → X, such that each ϕ(D) ⊂ X corresponds
to one of the 2-cells found before. We will further require D to be a convex
polygon and that ∂D is isometric to ϕ(∂D). Once we have a parametrization
of each 2-cell, since they attach well (their boundaries are the 1-cells), we
have a full piece-wise parametrization of X. In order to find D and ϕ, we
follow two steps:
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1. Take any convex polygon in the plane whose boundary ∂D is isometric
to the boundary of the 2-cell (e.g. a rectangle).

2. Obtain a correspondence of interior points of D mapping to the cloud
points in the 2-cell: for each interior point v in the 2-cell we want to
find an interior point x = ϕ−1(v) in D. We assume that each point
pi of D (including ∂D) is a barycentric combination of its neighbors
(as given by the neighboring relationship of the cloud, see [[9]]) with
Tutte’s weights (all coefficients are equal to 1

|Neigh(v)|). Then we have

to solve a linear system with unique solution (see [[9]]), which in turn
gives us the coordinates of interior points of D mapping to the cloud.

Once we have these points, we can extend the parametrization to the
whole interior ofD by taking its Delaunay triangulation with the newly found
vertices, and interpolating linearly for the images. Then we can re-mesh (or
even quadrangulate) the polygon D if desired.

Remark 6.1. We may wish ∂D to also have the same number of sides of
ϕ(∂D) (i.e. the different 1-cells), their length and their order (these are
known in advance and will be determined by the attachment map of the 2-
cell to the 1-cells). In that case denoting the sides’ lengths by l1, . . . , ld; we
can obtain a convex polygon D ⊂ R2 whose sides are l1, . . . , ld by finding the
polygon with maximal area and predetermined sides l1, . . . , ld inscribed in a
circumference. To do so, an optimization problem is solved in order to find
the circumference in question. By a result of Bramagupta [[19]], this is done
by finding the radius that makes the polygon’s interior angles add up to 2π.
Once we have D, we obtain a bijection between ∂D and the points of the
corresponding 1-cells in X.

7. Results

In this section we reconstruct five different surfaces, one without boundary
and four with it, which pose various challenges to the presented algorithm.
Three of the point-clouds are synthetic whereas the two are real 3D scans, one
of an actual textile: a pair of pants. All cases are challenging and interesting
for different reasons: the torus is really slim and its embedding describes
a (2,3)-toric knot which causes far away parts the surface (as measured by
geodesic distance) to be really near each other in Euclidean space. The vest
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was obtained by cutting out parts of an ellipsoid in order to obtain a surface
with the same topology as an open vest. Therefore, it has positive Gaussian
curvature everywhere and very large boundary curves. The turbine challenges
our algorithm since it presents a non-uniform density distribution of sample
points. Furthermore, the rosette is a sample cloud from a algebraic surface
(the zeros of a polynomial). It has two distinct connected components, very
large and at the same time very tiny boundary curves and moreover nontrivial
curvature everywhere which causes the appearance of three saddle points.
And finally the pants are a 3D-scan of a real pair of jeans and thus its point-
cloud presents wrinkles, noise and a non-uniform distribution of points.

Surface |∂S| 0-cells 1-cells 2-cells X (S)

Knotted torus 0 2 4 2 0
Ellipsoidal vest 3 6 9 2 -1
Turbine fan blade 4 7 10 1 -2
Algebraic rosette 4 12 16 4 -1 / +1*
Scanned pants 3 4 6 1 -1

Table 1: Reconstructed point-cloud samples and their computed topologies.

Note: |∂S| denotes the number of connected components of the boundary
and X (S) the Euler characteristic computed as #0-cells - #1-cells + #2-
cells.
*In the case of the Rosette X (S) is computed separately for each connected
component.

A summary of the results of applying our algorithm to the five point-
clouds can be seen in Table 1. There we display the number of reconstructed
curves of the boundary and the Morse cells found. This information is enough
to characterize topologically surfaces with boundary, since with it we can
compute the Euler characteristic of the surface [[14, 21]]. Notice that even
though the main connected component of the rosette, the vest and the pants
are topologically equivalent (i.e. homeomorphic), their cellular decomposi-
tions are completely different because of how they are embedded in R3 and
their different geometries.

Knotted torus

Figure 12 shows our algorithm applied to a point-sample from a torus
embedded in R3 along a (2,3)-toric knot. The algorithm correctly detects
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Figure 12: A sampled knotted torus: the black line is the direction of the height function;
local maxima, resp. minima, are painted red, resp. black; saddle points are painted blue;
their 1-cells are outlined in blue. On the bottom we plot the level set curves highlighting
when critical points appear.

2 local maxima, 2 local minima and 4 saddle points for the height function
depicted in the figure. Out of a point cloud of 30 000 points, a decomposition
of the surface into 8 Morse cells is found (two 0-cells: the minima, four 1-cells
associated to the saddle points and two 2-cells, one for each maximum). On
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the bottom of Figure 12 we display the level set curves Γ (c) = Gdown ∩ Hc

(see Section 5.2). Notice that for this point-cloud we have all possible local
transformations of level-set curves for surfaces without boundary (see Figure
10).

Ellipsoidal vest

Figure 13 shows our algorithm applied to a sample of 36 000 points from
a vest embedded in R3. The cloud was obtained by cutting out parts of an
ellipsoid in order to obtain a surface with the same topology as an open vest.
After detecting and parametrizing the boundary successfully, the algorithm
correctly detects 2 local maxima, 2 boundary maxima, 1 local minima and 3
boundary minima for the height function depicted in the figure. All critical
points are located at the boundary. Moreover, two new points (shown in
purple) are added where the 1-cells meet each other or the boundary curves
(see Remark 5.2).

Then, a decomposition of the surface into 17 Morse cells is found (six
0-cells, nine 1-cells and two 2-cells). In order to deduce how the two 2-
cells attach and which 1-cells are their boundary, we apply the curve flow
explained in Section 5.4. This process in action for one of the 2-cells can
be visualized in the Supplementary Video 1. Thus, we deduce how the cells
attach with each other (e.g. the 1-cell number 5 appears on both 2-cells and
it is precisely one of the curves where they attach, see Figure 13). From this
we recover the entire topology of the vest.

In Figure 14 we show a parametrization by a rectangle of one of the 2-cells
of the vest (the red one on the right in Figure 13). This is done as explained
in Section 6: the bounding 1-cells are mapped isometrically to a flat rectangle
(notice that we consider the 1-cells number 6 and 6’ as different) and then
interior points are obtained using the neighboring relationships of the cloud
(taking care of removing neighbors at opposite sides of the 1-cell number 6).
Finally, the 2-cell consisting of 27 000 points (shown in red in Figure 14)
is down-sampled using the parametrization and interpolating linearly to a
cloud of 900 points (shown in blue in Figure 14).
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Figure 14: Parametrization by a rectangle of the rightmost 2-cell of Figure 13. The
bounding 1-cells are mapped isometrically to a flat rectangle and then interior points are
obtained using the neighboring relationships of the cloud. The 2-cell consisting of 27 000
points (shown in red in Figure 13) is down-sampled interpolating linearly to a cloud of
900 points (shown here in blue in the parametrizing rectangle and in the 2-cell).

Turbine engine fan blade

Figure 15 shows our algorithm applied to 3 point-clouds with different
densities (approx. 3000, 7000 and 11000 points) coming from a 3D-scan of a
real aircraft turbine engine fan blade, 640 mm long and 300 mm wide. For
more details on how the data was collected and processed, we refer the reader
to [[20]].
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Figure 15: A 3D-scan of an aircraft turbine engine fan blade: the black line is the direction
of the height function; maxima are painted red, minima in black; 1-cells are outlined in
blue and the boundary curves in black. The purple point where the 1-cells meet is added to
the decomposition. Notice that even with 3 different sampling densities (from left to right
11000, 3000 and 7000 points) our reconstruction is robust and we get the same topological
decomposition.

After detecting and parametrizing the boundary successfully, the algo-
rithm correctly detects 1 local maxima, 3 boundary maxima, 1 local minima
and 3 boundary minima for the height function depicted in the figure (the
same for all 3 samples). All critical points are located at the boundary.
Moreover, 3 new points (shown in purple) are added where the 1-cells meet
each other or the boundary curves (see Remark 5.2). Then, a decomposi-
tion of the surface into 12 Morse cells is found (seven 0-cells, ten 1-cells and
one 2-cell). With these example clouds we highlight the robustness of our
algorithm when it faces non-uniform distributions of data points.

Algebraic rosette

Figure 16 shows our algorithm applied to a point-cloud coming from the
zeros of a random and sparse polynomial of degree 8 in 3 variables. This
means that each point (x, y, z) of the cloud satisfies an implicit equation
of the form

∑8
a,b,c=0 qabcx

aybzc = 0 where most of the coefficients qabc ∈ Q
are zero and chosen at random for a, b, c ∈ {0, 1, . . . , 8}. After detecting
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and parametrizing the boundary successfully, the algorithm correctly finds
a decomposition of the surface into 32 Morse cells: twelve 0-cells, sixteen
1-cells and four 2-cells. See the Supplementary Video 2 for a 3D view of the
decomposition were all Morse cells and critical points can be appreciated.

Figure 16: A sampled algebraic surface: the black line is the direction of the height
function; maxima are painted red, minima in black; 1-cells are outlined in blue and the
boundary curves in black. The purple point where the 1-cells meet is added to the decom-
position.

3D-scan of pants

Figure 17 shows our algorithm applied to a 3D-scan of a pair of real
jeans. The scan was made by an Artec Eva professional handheld 3D scanner
while a person was wearing the garment. The 3D scan is processed with the
proprietary software Artec Studio to obtain a point-cloud sample. In order
to apply our algorithm and to reduce irrelevant details and noise, we down-
sample the initial cloud of more than 500 000 points to 11 000 by using a
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box-grid filter, i.e. an axis-aligned bounding box is computed for the entire
point-cloud and then divided into grid boxes. Points within each grid box
are merged by averaging their locations.

Still, the cloud has a lot of detail (e.g. wrinkles) that cause the pro-
liferation of critical points and hence of Morse-cells. After computing the
neighbors for each point as explained in Section 4.1, we apply the discrete-
curvature filter described in Section 4.2. As explained there, this means that
we substitute each point v for a weighted average of its position and the
location of its neighbors (we take α = 0.4 and apply the filter 8 times). This
filter defines a bijection between the original cloud and the filtered one, which
preserves the topology of the underlying surface. Hence, the decomposition
we find for the filtered case is still valid and topologically accurate for the
original cloud, which is the one shown in Figure 17.

The algorithm correctly detects 1 local maxima, 2 boundary maxima, 2
local minima, 1 boundary minima and 1 saddle point for the height function
depicted in Figure 17. A decomposition of the surface into 9 Morse cells is
found (four 0-cells: the minima and a point added because the original 1-cells
intersect, six 1-cells associated to the saddle points, boundary minima and
the boundary curves, and one 2-cell for the local maximum). On the bottom
of Figure 17 we display the level set curves Γ (c) = Gdown ∩Hc (see Section
5.2). Notice that for this point-cloud we encounter several of the possible
local transformations of level-set curves for surfaces with boundary shown in
Figure 10.

8. Conclusions and further work

In this work we studied the problem of reconstructing surfaces with un-
known topology from point-clouds. We presented an algorithm that success-
fully reconstructs a surface S by finding a Morse cellular decomposition from
a cloud of sampled points. The algorithm can be applied to surfaces in RN

for any ambient dimension N , with or without boundary. We highlighted
the applicability of our method by reconstructing several different surfaces
with and without boundary which posed various challenges. For instance, the
torus was really slim and its embedding described a (2,3)-toric knot which
caused far away parts of the surface (as measured by geodesic distance) to
be really near each other in Euclidean space. The rosette is an algebraic
surface which has two distinct connected components, very large and very
tiny boundary curves and moreover nontrivial curvature everywhere which
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causes the appearance of many critical points. On the other hand, the pants
were obtained as a 3D-scan of a real pair of jeans and thus its point-cloud
presented wrinkles, noise and an irregular density distribution of points. For
all surfaces a global piecewise decomposition was found, with a small num-
ber of pieces in the examples examined. From the cellular decomposition the
topology of the surface was computed easily (see Table 1). The algorithm is
robust: it always produces a surface, and it captures the topological features
of the sampled surface with a size greater than the average distance between
sample points. To obtain this decomposition, we presented a novel method
to determine how (discrete) Morse cells attach to each order (see Figure 13).
Furthermore, for the case of surfaces with boundary, we developed a novel
graph theoretical method to determine robustly boundary points of the cloud.

Further work involves studying more deeply the parametrization of the
2-cells by flat regions of the plane. If a given 2-cell is too far away from being
flat (e.g. because of high curvature) the parametrization method described
in Section 6 may produce interior points in the region with non-uniform den-
sities and thus it may be better to subdivide the cell into smaller and flatter
pieces and afterwards parametrize each piece independently. On the other
hand, as already commented in Remark 6.1, it may be interesting to use flat
regions whose boundary is a polygon where its sides are mapped isometrically
to each of the bounding 1-cells, which in turn has the advantage of allow-
ing the gluing of the resulting parametrizations of the 2-cells into a global
piece-wise defined and continuous parametrization of the entire surface.

We also intend to test the reconstruction algorithm with more real point-
clouds of various textiles (i.e. as obtained with a 3D-scanner). This would
allow the creation of a reconstructed data-base of textiles that could be later
simulated with a physical cloth model. Furthermore, we expect to extend
the point-cloud reconstruction algorithm for surfaces to higher-dimensional
manifolds by iterating the hyperplane sections, reconstructing the manifold
from lower-dimensional slices. An interesting instance of this would be the
study of real algebraic varieties of any dimension, where point-cloud samples
can be obtained from their equations and refined where necessary. This
is hoped to lead our method to detect a Whitney stratification, and the
Morse cellular decomposition after [[13]] of the variety, by purely numerical
methods.
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Figure 13: A sampled vest: the black line is the direction of the height function; maxima
are painted in red, minima in black; 1-cells corresponding to boundary minima are out-
lined in blue and the boundary curves in black. The two purple points where the 1-cells
meet each other or the boundary curves are added to the decomposition. The numbers
correspond to the different formal 1-cells that, when identified (e.g. 7 with 7’), reconstruct
the entire surface from 2 pieces homeomorhic to disks.
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Figure 17: A 3D-scan of real pants: the black line is the direction of the height function;
maxima are painted red, minima in black, saddle points are painted blue; 1-cells are
outlined in blue and the boundary curves in black. The purple point where the 1-cells
meet is added to the decomposition. On the bottom we plot the level-set curves obtained
by intersecting the surface with planes perpendicular to the height function.
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