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Abstract
Robotic learning for deformable object manipulation –such as textiles– is often done in simulation due to the current
limitation of perception methods to understand cloth’s deformation. For this reason, the robotics community is always
on the search for more realistic simulators to reduce as much as possible the sim-to-real gap, which is still quite large
specially when dynamic motions are applied. We present a cloth dataset consisting of 120 high-quality recordings of
several textiles during dynamic motions. Using a Motion Capture System, we record the location of key-points on the
cloth surface of four types of fabrics (cotton, denim, wool and polyester) of two sizes and at different speeds. The
scenarios considered are all dynamic and involve rapid shaking and twisting of the textiles, collisions with frictional
objects, strong hits with a long and thin rigid object and even self-collisions. We explain in detail the scenarios
considered, the collected data and how to read it and use it. In addition, we propose a metric to use the dataset as a
benchmark to quantify the sim-to-real gap of any cloth simulator. Finally, we show that the recorded trajectories can
be directly executed by a robotic arm, enabling learning by demonstration and other imitation learning techniques.

Dataset: https://doi.org/10.5281/zenodo.14644526

Video: https://fcoltraro.github.io/projects/dataset/
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Introduction

The recent surge in the successful use of large
foundation models across various application domains
is primarily due to the availability of vasts amounts
of data to train general enough systems. However,
this success has not yet been replicated in the
robotic manipulation domain, mainly because of the
challenges in gathering enough data. One possible
way of obtaining enough data is through the use of
simulators if they become sufficiently good. Bridging
the sim-to-real gap, which can be narrowed to the
development of better simulators is therefore a crucial
step. Indeed, successful tasks have been learned
using physics simulations for rigid interactions such
as feasible grasps Eppner et al. (2019) or in-hand
manipulation Handa et al. (2023). However, most
simulators for highly-deformable objects like textiles
are still not realistic enough, specially when recreating
dynamic interactions. This is partly because most
simulators originate from the graphics domain which
prioritizes visual appearance over physical realism

Blanco-Mulero et al. (2024). Adding to the complexity,
the possibility of learning from real interactions is
hindered by the limited ability of current perception
methods to understand cloth deformation, due to large
self-occlusions and complex shape estimators even
using depth cameras or 3D scanners. As a result, there
are not many cloth datasets where real tracking of
the cloth deformation is captured, specially during
dynamic motions. Meaning that, with current data,
an accurate measure of the sim-to-real gap of existing
simulators is quite limited, hindering their progress.

The dataset presented in this publication was
collected originally to test a simulator designed for
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robotic cloth manipulation Coltraro et al. (2022, 2024)
and it has real information of the depth of several
keypoints of the cloth using Opti-Track small markers.
To our knowledge this is the first time that such
a comprehensive dataset of highly dynamic motions
with non-trivial deformations has been collected and
publicly released. Together with the dataset, we
propose a measure to benchmark the sim-to-real gap
of any existing or novel cloth simulator using our data.
We also show how the recorded trajectories of the 2
upper corners for one of the scenarios considered can
be directly executed by a robotic arm with success.

Related work

In the field of computer vision, there have been
many released datasets of real images of cloth
addressing different perception problems, e.g. cloth
recognition/classification or landmark points detection
Liu et al. (2016), surface reconstruction for cloth
objects Bednarik et al. (2018) or segmentation of
cloth parts when worn by humans Zhao et al. (2018).
Datasets related to fashion as Liu et al. (2016) include
a large amount of images with labeling indicating cloth
type and landmarks to facilitate localization of the
object, e.g. where the sleeves are or the location of the
end of the trousers. Clothes are either completely flat
or worn by humans. Datasets for surface reconstruction
like Bednarik et al. (2018) consist of the RGB-D data
the system needs in order to reconstruct depth and
normals from a single-view image.
Robotic manipulation of cloth has very different

perception requirements, as clothes may appear in
many more unstructured configurations as crumpled,
hanged or folded. Cloth classification is needed to
define different folding strategies, so there are datasets
to learn to identify clothes from different crumpled
states Sun et al. (2017), or to classify them and
estimate their pose Mariolis et al. (2015) or to segment
and identify wrinkles Wagner et al. (2013). The
problem of identifying landmarks on cloth has been
adapted from the literature of computer vision to apply
it during robotic manipulation in Gustavsson et al.
(2022), using combinations of existing datasets and
adding some more images from robotic manipulation.
In the dataset Verleysen et al. (2020) they use real
recordings of people folding clothes, identifying the
skeleton of people, and recording RGB-D from 3
perspectives, but without a clear way of obtaining the
depth of only the pieces of cloth. Another relevant
problem in robotics is to identify a set of very particular
landmarks: corners and edges. Datasets to recognize
corners provide RGB-D data where color Qian et al.
(2020) or UV-light Thananjeyan et al. (2022) are used

to segment regions of interest in pieces of cloth that are
later identified using only depth. A more complex issue
is that of tracking deformation while manipulating
the cloth. Few datasets exist of point-clouds with a
labeling of what points correspond to important parts
of the cloth like corners or edges during a manipulation
Schulman et al. (2013). Another important trend in
robotics is using Deep Neural Networks to predict
actions from images. An example in this field is the
dataset in Avigal et al. (2022) containing RGB-D
images where the action is annotated as a pick up
point and a direction of motion in the image, and
a different image before and after the action. More
complex actions have been tackled lately with Visual
Language Models where a sequence of images is linked
to a sequence of positions of the end-effector Chi et al.
(2024).

Recent large-scale robot manipulation datasets like
Padalkar et al. (2023); Khazatsky et al. (2024) include
images and robot trajectories for different robot
environments, scenes and objects, some clothes among
them, but without ground truth on cloth deformation
data. Due to the complexity of understanding
deformations in cloth, a lot of the literature on learning
manipulation policies tailored to textiles use cloth
simulators. However, for most of the cloth simulators
widely used to learn dynamic actions there is a
large sim-to-real gap Blanco-Mulero et al. (2024) that
needs to be closed by training with real data. This
is where comprehensive datasets such as ours can
become of critical importance, since they can be used
for the calibration of the physical parameters of the
cloth models, which is one of the main difficulties in
using cloth simulators for planning and manipulation
purposes.

The most closely related datasets to ours are those
meant to test cloth simulators. In computer graphics,
cloth simulations have been looking increasingly
realistic, although not reflecting the real behaviour of
cloth that robots would require to predict motions.
Real image datasets of cloth in this field are meant
to estimate the parameters of the simulation, focusing
on local properties of cloth such as elasticity or rigidity
Wang et al. (2011); Miguel et al. (2012) where specially
designed machines are used to measure elasticity
parameters, and datasets contain static images of the
fabrics before and after certain deformations Clyde
et al. (2017). Other works that study friction such as
Rasheed et al. (2021) use video recordings of clothes in
motion with very simple friction and collision scenarios,
but without any depth information.

The dataset presented in this work falls into the
previous category. To the best of our knowledge,
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Density

(kg/m2)
Stiffness

(%)
Friction
Coeff.

Elasticity
(%)

Polyester 0.1042 7,6 0.48 (3,3%, 3,5%, 11,3%)
Cotton 0.3046 43,7 0.68 (0,8%, 0,6%, 1,0%)
Wool 0.1804 12,9 0.59 (5,0%, 2,4%, 9,6%)
Denim 0.3046 20,3 0.8 (10,0%, 3,8%, 11,3%)

Elasticity given for the short, long edges and the diagonal, respectively.

Figure 1. All the fabrics (size A2 and A3) recorded for the dataset. From left to right we have: wool, (stiff) cotton, denim
and polyester (first A2 sizes and then A3). On the table we provide the mechanical parameters of the fabrics following the
standarization rules for measuring them proposed in Garcia-Camacho et al. (2024).

it is the first to include real depth information
recorded during highly dynamic motions with non-
trivial deformations including collisions and self-
collisions of the textiles. Recently, a dataset has been
published as the byproduct of the benchmark done
in Blanco-Mulero et al. (2024), where they compared
several cloth simulators to evaluate the sim-to-real gap
using depth images collected with an RGB-D camera.
However, that dataset includes only one dynamic task
(placing the cloth flat on the table, also included
in our dataset) and one quasi-static task of a very
similar nature, with 3 rectangular clothes. The dataset
presented in this work is more complete in terms
of types of dynamic motions, cloth materials and
cloth sizes, comprising 120 recordings involving rapid
shaking and twisting of the textiles, collisions with
frictional objects, strong hits with a long and thin
rigid object and even self-collisions. Therefore, it is
our hope, that with the provided dataset, a much
throughout comparison between simulators can be
done. In addition, the Opti-track recordings, although
having less recorded points, provide much better
accuracy than the RGB-D cameras, which can be very
noisy around the boundaries of the cloths.

Data collection

We recorded the motion of real pieces of cloth under
several dynamic conditions, including self-collision,
collisions with a table and a rigid stick. In total, we
recorded 120 motions with a Motion Capture System
that captured the deformations of the cloth. In the
following we give more details about the cloths used
and the recording setting.

Cloth’s materials and sizes

For the recording in this work, we employ four cloth
materials described in Figure 1 and two different
sizes: A3 (0.297 x 0.420 m with area 0.1247 m2) and

A2 (0.42 x 0.594 m with area 0.2495 m2). Before
performing the experiments they were ironed to remove
all considerations of plasticity from the validation
process. All the textiles are used in all recordings,
except in the collision scenarios, where we only record
the A2 textiles. In Table in Fig. 1 we can see the
density of all the fabrics and we also report the
mechanical characteristics of all the fabrics using the
standardization measures proposed in Garcia-Camacho
et al. (2024). We can see how the chosen clothes present
a variety of mechanical properties, the cotton being the
stiffest and less elastic and with large friction, while the
polyester is the less stiff, but showing elasticity mostly
in the diagonal direction (i.e. shearing). The denim
cloth, made of cotton and elastane is the second most
stiff, but presents the highest friction and elasticity.

Motion capture system for cloth

To record the motion of the textiles we use a system
of cameras that detects and tracks reflective markers
that are hooked on the cloth. This technology has
been extensively used to track the motion of rigid and
articulated bodies. Nevertheless, its use for deformable
objects has been less common since the weight of
the markers could affect the dynamics of the object.
To avoid this, we used very small markers, with a
diameter of 3 mm and a weight of 0.013 g, and therefore
account for less than 1.25% of cloth’s weight even
for the lightest materials. Depending on the size of
the cloth we used different number of markers. For
the A2 size, we used 20 reflective markers, whereas
for the A3 ones 12 were used. In both cases, the
makers are placed equidistantly in order to obtain a
faithful representation of the dynamics of the fabrics.
An example can be seen in Figure 2 - right. Notice that
from this configuration of the markers we can easily
obtain a mesh for the recorded cloths.

The setup used for data collection is shown in
Figure 2 - left. We used five Optitrack Flex 13
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Figure 2. Left: setup used to record the motion of the textiles. Five cameras surround the scene so that every marker
(encircled in red on the right) is visible to at least 2 cameras at the same time. Right: reflective markers attached to the
denim sample, with a diameter of 3 mm and a weight of 0.013 g.

cameras surrounding a scene from the manufacturer
NaturalPoint Inc. We found that 5 was enough to
record a varied set of fast movements without losing
track of the textiles. The cameras cannot face each
other, since this causes blind spots that make markers
become invisible. At the beginning of each recording
session the cameras were calibrated automatically with
respect to a user-defined reference system. We defined
the plane z = 0 to be either at the floor or at a
table for the collision scenario. The post-process of
the data was done with the provided software Motive.
This combination of software and hardware offers sub-
millimeter marker precision, in most applications less
than 0.10 mm according to the manufacturers.

Free-hanging motions

These recordings allow us to study how the
characteristics, speed and size of the textiles affect their
motion without collisions. To this end, we execute two
different trajectories:

(a) Shaking: the cloth is held by two corners and
shaken back and forwards following the motion
in Figure 3-(a).

(b) Twisting: the cloth is held by two corners. The
line formed by the two grasps is rotated multiple
times (approximately 30 degrees) with respect to
the z-axis, as shown in Figure 3-(b).

We recorded these trajectories for the 8 different
textiles listed in Figure 1. Each motion is repeated
at two different speeds: slow and fast and in two
different grasping modes. In the grasping mode I, the
human moves the cloth with a hanger that has the

(a)

(b)

Figure 3. (a) Shaking motion sequence (left to right): the
cloth is shaken back and forwards. (b) Twisting motion
sequence (left to right): the cloth is rotated with respect to
the z-axis back and forth several times.

cloth grasped, as shown in Figure 2, right. In the
grasping mode II, the human holds the cloth by the two
upper corners with bare hands. The combinations of
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Table 1. Average velocities (m · s−1) for the twisting motion
of the A2 textiles. We display the speeds for the first
repetition I (with a hanger) and for the second II (with bare
hands).

Material Slow I Fast I Slow II Fast II

Polyester 0.081 0.250 0.090 0.247
Wool 0.093 0.228 0.085 0.256
Denim 0.092 0.308 0.090 0.292
Stiff-cotton 0.091 0.218 0.107 0.246

all the materials, sizes and modes leads to 64 different
recordings.

Each motion lasts approximately 15 seconds with a
frame-rate of 120 Hz. As the motions are performed
by a human, every movement has its own unique
variability. As an example, in Table 1 we can see
the average speeds of the twisting motion comparing
the fast and slow speeds of the A2 textiles. Despite
the variability natural in human repetitions, the
table shows that overall the speeds are maintained
consistently.

Motions interacting with the environment

This set of recordings are meant to study the
interactions of cloth with the environment, that is,
when it collides with the objects of the environment
with different frictions and shapes. Moreover, we also
recorded (to our knowledge for the first time in
literature) self-collisions of real cloths. Notice that self-
collisions are intrinsically more difficult to record with
the motion capture system than other motions, since
in many cases they involve self-occlusions (think about
folding a cloth in four, three quarters of the markers
would be completely self-occluded by the time the fold
is completed). Therefore, we designed a scenario in
which every part of the cloth could be fully recorded,
and the self-collisions were non-trivial. We recorded all
these collision tests only with the A2 size cloths. We
performed the following motions:

(a) Collision with a table: The textile starts grasped
by two corners at about 10 cm of height and
is afterwards laid dynamically on the table
as shown in Figure 4-(a). Each motion lasts
approximately 5 seconds and is performed with
two different table surfaces: one with low friction
consisting in a raw polished table and one with
high friction, a table with a tablecloth. Moreover
we consider two additional sub-cases depending
on if the lay is complete or partial:

(a.1)

(a.2)

(b)

Figure 4. (a.1): the cloth starts suspended and is afterwards
dynamically laid partially onto the table. (a.2): the cloth
starts suspended and is afterwards dynamically laid fully onto
the table. (b): the cloth is held by its two upper corners and
then is hit repeatedly with a long thin stick.

1. Half lay with and without friction: the cloth
is laid only partially, so that half of the cloth
is still suspended (see Figure 4-(a.1)).

2. Full lay with and without friction: the cloth
is laid fully, so that the the cloth is fully flat
on the table (Figure 4-(a.2)).

For these motions we did a total of 16 recordings.

(b) Hitting scenario: the cloths were grasped by two
corners, and held suspended in the air with the
long sides perpendicular to the floor. Then, they
were hit repeatedly with a long thin stick. Each
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Table 2. Summary of all the motions recorded in this work. We report the size of the textile used (DIN A2 or A3), the
amount of markers attached, how many recordings we have, the typical duration of one recording, whether there are collisions
involved and a link to the relevant figure.

Scenario Sizes Markers Recordings Duration Collisions Details

Free-hanging A3, A2 12 or 20 64 ∼15 s No Shake or twist (Fig-
ure 3).

Collision with table A2 20 16 ∼5 s Yes Half or full lay (Fig-
ure 4-(a))

Hitting A2 20 4 ∼40 s Yes With stick (Figure 4-
(b))

Self-collisions A2 20 36 ∼7 s Yes 3 sub-cases (Figure 5)

textile is hit four times at various locations of the
cloth with varied strengths and speeds as shown
in Figure 4-(b). The recordings lasted around 40
seconds. The stick has a length of 75 cm and a
diameter of 1.5 cm. Two markers are put at both
ends of the stick to record its trajectory. For this
scenario there are a total of 4 recordings.

(c) Self-collisions: the cloths were grasped by four
or two corners, and held suspended in the air
with their long sides parallel to the floor and the
middle of the textile resting on top of a metallic
rod, see Figure 5. Then, the corners were released
so that the cloths collide with themselves. We
consider 3 different sub-cases:

1. The cloth is held by its four corners with its
long side perpendicular (or normal) to the
rod (see Figure 5-(c.1)). Then the 4 corners
are released at the same time.

2. The cloth is held by its four corners with its
long side parallel to the rod (see Figure 5-
(c.2)). Then the 4 corners are again released
at the same time.

3. The cloth is held by two of its corners
with its long side perpendicular to the
rod (see Figure 5-(c.3)). In this case
approximately half of the cloth is already
down (perpendicular to the floor). Then the
2 corners are released to cause the self-
collision.

The recordings lasted between 6 and 8 seconds.
The rod has a length of 164 cm and a diameter of
7 mm. Two markers are put at both ends of the
rod to record its static position. For this scenario
each sub-case is recorded 3 times and thus there
are a total of 36 recordings.

A summary of all the scenarios considered can be
seen in Table 2.

Data format and processing

Each cloth motion is stored in a comma-separated
values (CSV) text file containing the trajectory in
space of all reflective markers. We show an example
of one of the files in Figure 6. The relevant parts of
each file are:

- Header : contains general information about the
recording equipment and other miscellaneous
data (e.g. the frame rate of the recording).

- 3rd row : unique IDs for each marker. This is only
relevant for the hitting scenario where the ends
of the stick are labeled with ID = 21 and ID =
22.

- 6th row and onwards: here is where the most
important data is stored, each row consists
of a frame identifier, a time-stamp and the
concatenation of the x,y,z coordinates of each
marker at the given time-stamp.

If we denote by (xk(t), yk(t), zk(t)) ∈ R3 the position
in space of marker k = 1, . . . , N (e.g. N = 12 in the
case of the A3 textiles) at time t, then (omitting the
frame identifier column) from the 6th row and onwards
each CSV file can be represented by a matrix A where
the j−th row aj ∈ R3N+1 of A is given by:

aj = (tj , x1(tj), y1(tj), z1(tj), . . . , xN (tj), yN (tj), zN (tj)) .

Finally, let us mention that since in the hitting
scenario we are also recording the motion of the rigid
stick colliding with the cloth, we also get six more real
numbers per row, which correspond to the position in
space of the ends of the stick (these markers have labels
in the 3rd row of the CSV file with ID = 21 and ID
= 22 as previously mentioned). This also happens for
the self-collision scenario, but that case is even simpler
because the rod is static. The coordinates of the rod are
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(c.1)

(c.2)

(c.3)

Figure 5. (c.1): the cloth is held by its four corners with its
long side perpendicular to the rod and then the 4 corners are
released. (c.2): the cloth is held by its four corners with its
long side parallel to the rod and then the corners are
released. (c.3): the cloth is held by 2 of its corners with its
long side perpendicular to the rod and then these 2 corners
are released.

given in this case by the first 6 columns of A (omitting
the first column with the time-stamps)

The software Motive does an automatic labeling
and tracking of the markers, nevertheless when the
movements are too rapid it loses some of them and
creates new labels. We have post-processed manually

the data to identify and merge the different labels
that correspond to the same markers. Inevitably some
markers are lost some of the time (especially with fast
or abrupt movements), for instance when the textiles
deform so much that the corners are no longer visible to
the cameras. We have taken care that in our recordings
these disappearances only happen for short periods of
time. Nevertheless, in the rare cases when a marker is
lost for some frames, an empty value is stored in the
CSV file for each time-stamp in which the marker is
missing.

In order to quantify this phenomenon, in Table 3 we
compute the total amount of missing markers in each
frame for all the scenarios. This means that in each
frame of every recording we count how many markers
are missing and add them all up.

Table 3. Amount of missing markers for all the scenarios.

Scenario Missing Total %

Free-hanging 7,397 1,953,576 0.38
Collision table 1,961 291,060 0.67
Hitting 3,195 261,800 1.22
Self-collisions 341 478,654 0.07

Overall 12,894 2,985,120 0.43

As we can see in the table, the amount of missing
data is very small (less than 1%) for all scenarios with
the exception of the hitting scenario, where the speed
and strength of the hits cause some markers go missing
for small amounts of time.

Reading the data

As explained in the previous section, extracting the
data from each file sums up to reading a rectangular
matrix A of dimensions T × (3N + 1) where T is
the number of time-stamps and N is the number of
markers (i.e. N = 12 or N = 20 depending on the size
of the cloth). For convenience of the user we provide a
MATLAB file read data.m that automates the reading
process. The naming convention we have used for the
files and how they are distributed is as follows. We
provide 4 separate folders:

• Free-hanging: these correspond to the free-
hanging motions shaking and twisting of all the
textiles. Each file has the generic name:

material size type speed grasp.csv

where

material ∈ {denim, cotton, wool, polyester},
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Figure 6. CSV text file: each row gives a time-stamp and the x,y,z coordinates of every marker at the given time-stamp.

size ∈ {A2, A3},
type ∈ {shake, twist},
speed ∈ {slow, fast} and

grasp ∈ {hands, hanger}.

Then, for instance, the fast shaking of A3
cotton with grasping mode hanger is named
cotton A3 shake fast hanger.csv.

• Tablecloth: these correspond to the collision
with a table scenario as described before. Each
file has the generic name:

material size type friction.csv

where

material ∈ {denim, cotton, wool, polyester},
size ∈ {A2},
type ∈ {half lay, full lay} and

friction ∈ {low friction, high friction}.

So for instance the full lay of A2 denim using a
high friction table is named:

denim A2 full lay high friction.csv

Moreover, in the MATLAB file read data.m for
these motions, we provide code to extract the
trajectories of the two upper corners (these can
be directly executed by a robot as we highlight
later).

• Hitting: these correspond to the second collision
scenario where the textiles are hit with a rigid

stick. Each file has the generic name:

material size type.csv

where

material ∈ {denim, cotton, wool, polyester},
size ∈ {A2} and

type ∈ {hitting}.

So for instance the hitting of A2 polyester is
named polyester A2 hitting.csv.

• Self-collision: these correspond to the final
collision scenario where the textiles collide with
a rod and themselves. Each file has the generic
name:

material size number corners position rep.csv

where

material ∈ {denim, cotton, wool, polyester},
size ∈ {A2},
number ∈ {four, two},
position ∈ {normal, parallel} and

rep ∈ {rep1, rep2, rep3}.

Then, for instance, the second repetition of the
self-collision recording for wool, when held by 4
corners and with its long edge normal to the rod
is named

wool A2 four corners normal rep2.csv.
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Therefore we have a total of 4× 2× 2× 2× 2 =
64 free-hanging files, 4× 1× 2× 2 = 16 tablecloth
collision motions, 4 hitting recordings and 4× 3×
3 = 36 self-collision cases. As already mentioned, we
provide for each case a specialized MATLAB file
read data.m that automates the reading process.

Dataset use-cases

In the following we present two possible applications of
the previous dataset: extracting the trajectory of the
two upper corners of the textiles to execute them with
a robotic arm (possibly enabling imitation learning
methods) and its use for the empirical validation of
cloth models.

Empirical validation of cloth simulators

A direct application of the dataset presented in this
work is the measurement of the sim-to-real gap of
a cloth simulator. For that, one needs to compare
the recorded cloths with the simulated ones. In order
to do that, denote the sequence of positions of the
recorded nodes given by the motion capture system
every ∆t > 0 seconds by {ϕ0,ϕ1, . . . ,ϕm} and the
simulated sequence obtained from a cloth model
by {φ0,φ1, . . . ,φm}. This sequence is obtained by
taking φ0 = ϕ0 (the cloth is meshed by the canonical
meshing given by the markers: see Figure 2, right) and
simulating the cloth using the recorded trajectories of
the two upper corners with the same ∆t > 0. Then, we
can compute the mean absolute error:

ē = 1
m

m∑
n=1

√
||φn − ϕn||2M, (1)

where || · ||M is the norm induced by the mass
matrix M of the mesh discretization of the recorded
cloth. This means that ||x||2M = x⊺ ·M · x and M
is a diagonal matrix with diagonal elements mk >
0 equal to one third of the sum of the areas of
all incident triangles (one fourth in the case of
quadrilaterals) to the kth node of the discrete mesh.
The use of the mass matrix M ensures that we
are taking a sound approximation of the integral
1
m

∑m
n=1

∫
||φn − ϕn||dA. This is appropriate for an

error measure that is global in the domain, and tries
to be as independent of the mesh as possible. In the
case that a marker k was missing for a given frame
n, we just omit its corresponding coordinate from the
computation of the norm || · ||M for that given frame,
i.e. we use a reduced diagonal sub-matrix of M by
removing the kth row and column. Notice that in the
case that the simulated cloth has a finer resolution than

the recording, we must only use the subsample of the
simulated nodes that coincide with the recorded ones
to compute ē.

In sum, the proposed error measure (1) is very
adequate to compare simulations to recordings for any
cloth model since it is robust with respect to the
number of nodes of the mesh, it has physical units and
moreover it compares the same regions of the simulated
and recorded cloths, e.g. the two lower corners of the
recording are compared to the two lower corners of the
simulation, as opposed to other error measures (such
as the Chamfer and Hausdorff distances) used e.g. in
Blanco-Mulero et al. (2024).

Generalisability : notice that in our dataset we have
enough data to even test the out of sample accuracy
of cloth simulators after their parameters have been
estimated (e.g. minimizing (1)). For instance: using
only the shake scenario to ‘train’ the simulator, one
could validate its realism with the twist scenario. Or
using only the half lay collision with a table case,
one could test the accuracy with the full lay motion.
Furthermore, as the physical parameters of most cloth
models are intrinsic and only depend on the physical
characteristics of the textile in question, any estimation
made for rectangular cloths would work for garments
with non-trivial topology made of the same material. In
fact, many cloth models simulate garments with non-
trivial topologies as ensembles of flat patches identified
along their boundaries, which would correspond to
real-life seams.

Inextensible cloth simulator. Part of this dataset has
been used for the empirical validation of the cloth
model presented in Coltraro et al. (2022, 2024). It was
shown that this model was able to simulate properly
friction and to model the dynamics of fast and strong
hits with a rigid object by using the collision with a
table and hitting recordings described in this work,
with simulations running two times faster than real-
time, e.g. 12 seconds of real time are simulated in
only 6. To carry out this empirical validation, three
physical parameters of the cloth model were fitted:
α (Rayleigh damping), δ (virtual aerodynamics mass)
and µ (friction coefficient) by minimizing the absolute
error (1) with respect to α, δ, µ. Then, optimal values
of the parameters for both the high and a low friction
collision with a table cases were found, with absolute
errors (1) under 1 cm for all the DIN A2 textiles (for
a video of the comparison, see https://youtu.be/s

WJcxfTwKHE). Furthermore, using only two physical
parameters (µ was set to 0), the model was able to
simulate faithfully the hitting scenario with average
errors around 1 cm (see https://youtu.be/U7-p_1E0
9L8) for all A2 textiles.
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Figure 7. The robotic arm Barrett WAM with a hanger (left) executes the recorded upper corner trajectories for
wool A2 full lay low friction.csv (middle) by computing the inverse kinematics so that the end-effector of the WAM follows
precisely the average of the 2 curves. The result is a successful and smooth dynamic laying of the A2 wool textile onto a table
(right). For the full motion, see the supplementary video.

Robot execution of recorded trajectories

As previously mentioned, the recorded trajectories of
the Opti-Track markers are very precise and do not
suffer from noise issues, as opposed to other recording
methods, e.g. depth cameras. This opens the door to
using these trajectories as demonstrations of successful
tasks performed by a human that a robot can imitate
or learn from. For instance, in the collision with a table
scenario, we have recordings of a human laying a textile
flat onto a table dynamically. Hence, the trajectory
of the two upper corners of the cloths can be used
as a demonstration from which the robot can learn
from. Developing such learning methods is bond to
be complex and it is out of the scope of this work,
but as a proof of concept we execute with a robotic
arm Barrett WAM with a hanger the recorded upper
corner trajectories for wool A2 full lay low friction.csv
(see Figure 7 and the supplementary video attached
to this article). In order to do so, we simply extract
the recorded trajectory of the 2 upper corner markers
(Figure 7, middle) we average them, and then we
compute the inverse kinematics so that the end-effector
of the WAM follows precisely this averaged curve. The
result is a successful and smooth dynamic laying of the
A2 wool textile onto the table.

Influence of the markers or the grasping points. In
order to study to which extent the grasping points
or the markers that we attach to the cloths influence
their dynamics, we will use the WAM robot and
the trajectory shown in Figure 7 as described in the
previous section. The robot reproducibility was first

Figure 8. To study the influence of the grasping points or
the markers in the cloths’ dynamics, we consider 3 scenarios
with varying conditions: a reference grasp (upper right), the
reference grasp plus the markers and an alternative grasp
without markers (lower right). The same trajectory is
executed several times by the robot and we annotate the final
position of the 2 lower corners using a metric board (left).

tested by executing the same trajectory many times,
showing a millimetric margin of error with respect to
the final position and orientation of the end-effector.
We performed a quantitative comparison of 3 different
scenarios using the lightest of all textiles: the size A3
polyester sample (see the right most textile in Figure
1). This sample weights 13 g and we attach 12 markers
weighting 0.013 g each, so they amount to 1.2% of the
cloth’s weight. The 3 scenarios considered are:
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Reference : the trajectories are executed with a
standard grasp and without markers (see Figure
8, upper right).

With markers : the trajectories are executed with
the same grasp as in the reference scenario but
with the markers attached.

Alternative grasp : the trajectories are executed
with a different grasp and without markers (see
Figure 8, lower right).

In order to measure the differences, we use a metric
board which allows us to measure the final in-plane
position of the lower two corners of the cloth (see
Figure 8, left). For each of the described scenarios we
execute the same trajectory 14 times and carefully (to
a margin of error of 0.5 cm) annotate the final position
of the 2 lower corners with respect to the axis shown
in Figure 8.
The results of all the trials can be seen in Figure 9.

On the top we plot the ‘left corner’ and on the bottom
the ‘right corner’ (as seen in Figure 8, left). We also
plot confidence ellipses corresponding to 2 standard
deviations.
At first glance, the distributions of the corner’s

positions for the 3 scenarios considered seem to be
very similar (the confidence ellipse for the ‘alternative
grasp’ case might be somehow smaller because there
are less outliers for that scenario). In order to have a
more quantitative measure, in Table 4 we compute the
mean of each group for each corner separately.

Table 4. Mean of each scenario for the left and right corners
separately. The coordinates are given in cm by the metric
board (Figure 8, left).

Scenario Left corner Right corner

Reference (12.0 , 38.2) (8.9 , 10.5)
With markers (11.7 , 37.9) (8.5 , 10.6)
Alternative grasp (11.9 , 38.5) (9.2 , 10.5)

Discussion: the goal of this set of experiments was
to study the influence of the markers or the grasping
points in the dynamics of the textiles. Since we needed
to measure the influence of the markers, we could not
use the motion capture system as before. As a result,
we performed a very dynamic motion (Figure 7) and
recorded the final position of the 2 lower corners of
a cloth (A3 polyester, the lightest of all) as given by
a metric board (Figure 8, left). It is interesting to
note that even within the same scenario there can be
quite a lot of variability (see Figure 9). This might
be because the cloth is extremely light and many
aerodynamics effects influence the motion. To the best

Figure 9. Final positions given by the metric board of the
‘left corner’ and the ‘right corner’ (as seen in Figure 8, left)
for the 3 scenarios considered (reference, with markers and
alternative grasp). In dotted lines we also plot confidence
ellipses corresponding to 2 standard deviations.

of our knowledge, this is the first time this has been
measured. But as can be seen in Figure 9 and Table
4 no noticeable bias is apparent when we attach the
markers to the cloth or change its grasping points. This
shows the reproducibility of the recorded motion, even
under slightly different conditions (e.g. with a different
grasp).

Conclusions and further work

We have presented a comprehensive dataset of highly
dynamic motions of real clothes tracked with a Motion
Capture System. To the best of our knowledge, it is
the first time that such a dataset with recordings
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of the real deformations of cloth in 3D has been
compiled for complex cloth motions. We have a total
of 120 motions with a variety of rectangular clothes
of different stiffness, elasticity and friction properties,
and with very different dynamic motions, including
interactions with the environment and self-collisions.
This dataset has a direct application to fine-tune cloth
simulators to minimize the sim-to-real gap, and to
benchmark existing simulators offering a clear ground-
truth to compare to. This can ultimately increase
the usability of simulators to train methods with a
minimal sim-to-real gap. Moreover since the recorded
trajectories for the upper corners of the textiles are of
very high quality with very little noise, they can be
directly executed by a robotic arm, and therefore are
perfect candidates for applying learning algorithms to
them, in order to generalize the recorded motions to
other fabrics of different materials or sizes.

The methodology we have used to track and record
the 3D position of key points on the cloth surface
using Opti-Track markers is also novel and with great
potential. Further work would involve re-recording
this data jointly with synchronized RGB or RGB-D
images of the clothes in motion to obtain deformation
ground truth, opening the door to train perception
methods and state-estimation learning algorithms
simultaneously.
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